
Optimization of Module Placement during FPGA Reconfiguration 
 

Introduction 
Partial reconfiguration is an option available on the more current models of field programmable 
logic arrays (FPGAs) which enables them to have more versatility. The previous models only 
supported static programming – once the board is programmed, it stays constant and cannot be 
modified midway through execution. Thus, the previous models can only perform one task at a 
time; to perform a different task, the board must be completely reprogrammed before 
continuing. With partial reconfiguration, however, the concept of dynamic programming is 
introduced – part of the board’s programming can be changed during execution while other 
parts remain untouched. The dynamic programming is done by streaming bits and overwriting a 
subsection (a set of columns) of the board. This then allows a single FPGA board to support 
multiple tasks without interruption. This situation proves useful when sequential tasks use the 
same modules. 
 

The Work 
I will analyze the relationship between different components and the space it occupies on 
various Virtex-4™ FPGA boards. For implementation and synthesis, I will be using the Xilinx® 
ISE v.7.1 software package. The following describes the procedure in detail: 
 
I) Optimal sizing of individual components 

Individual components are single logic blocks or modules. In this project, we are considering (but 
not limited to) the following modules generated using CORE Generator™ (part of Xilinx®): adder, 
multiplier, and divider. Using empirical data gathered from the standalone module syntheses, we 
can determine the smallest amount of space each module occupies and subsequently infer 
mathematical models between the bit-width and space needed for each different type of module. 
Note that the optimal sizing of the component will be restricted by a time constraint – the module 
cannot perform over a certain time limit (10 ns) to be considered functional. 

 
II) Optimal sizing of merged components 

Once the optimal sizes of the individual components have been determined, they can be 
combined into a single “super-module”. The smallest space available needed for this can then be 
found empirically. We can then compare this data from I) and see if the results are consistent. 

 
III) Design of wrapper-based models for individual components 

A wrapper consists of the external wires of a given module. It is normally placed on one (or if 
needed, two) sides of the module. This is considered overhead and routes all incoming and 
outgoing signals through that specific space. Using the modules from I), we create wrappers and 
determine the least amount of space required. The goal of this stage is to determine a wire-to-
length ratio. We can then use the correlation between the merged and individual modules to 
better judge the optimal placement and merging of components. 
 

IV) Design of wrapped-based models for merged components 
Following the idea of III), we then create wrappers for merged modules from II). We can then 
compare the results to III)’s and see what the relationship is between individual components 
with wrappers and merged modules with wrappers. As stated in III), we are ultimately looking 
for a wire-to-length ratio. As part of the optimization process, we will also look at bit streams 
needed to reconfigure the same modules but in different arrangements. 


